Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Landau level structures and semimetal-semiconductor transition in strained InAs/GaSb quantum wells

Identifieur interne : 000416 ( Russie/Analysis ); précédent : 000415; suivant : 000417

Landau level structures and semimetal-semiconductor transition in strained InAs/GaSb quantum wells

Auteurs : RBID : Pascal:04-0167368

Descripteurs français

English descriptors

Abstract

Using Burts envelope function theory and the scattering matrix method, we investigate the hybridized electron-hole Landau levels in strained InAs/GaSb quantum wells sandwiched between wide-gap AlSb barrier layers under electric and a quantizing magnetic fields applied perpendicular to interfaces. At zero magnetic field, in the structures studied here, the lowest electron level in the InAs layer lies below the highest heavy-hole level in the GaSb layer. With increasing magnetic field, the electron levels move up and the heavy-hole levels move down, producing anticrossings and gaps in the Landau level structures. We have found that the Landau level structures depend strongly on the lattice-mismatched strain and the applied voltage. As a result, in the region before anticrossings, the g factor of the lowest electron Landau level has a larger value for the quantum well structure grown on GaSb than that for the structure grown on InAs, while in the region after anticrossings the situation reverses for the g factor. Under low magnetic field, the difference between the electron g factors for the structures grown on different substrates is found to be as large as 10 for zero bias and decreases significantly with increasing bias. When all electron levels become higher than hole levels at high magnetic fields, the semimetal-semiconductor transition occurs. The critical magnetic field Bc for the phase transition in structures grown on InAs is found to be lower than that in structures grown on GaSb. It is also obtained that a positive voltage biased across the InAs/GaSb well essentially decreases Bc. Therefore, for a fixed magnetic field, the semimetal-semiconductor transition can be controlled by a bias.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0167368

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Landau level structures and semimetal-semiconductor transition in strained InAs/GaSb quantum wells</title>
<author>
<name sortKey="Zakharova, A" uniqKey="Zakharova A">A. Zakharova</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physics and Technology of the Russian Academy of Sciences, Nakhimovskii Avenue 34, Moscow 117218, Russia</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of Physics and Technology of the Russian Academy of Sciences, Nakhimovskii Avenue 34, Moscow 117218</wicri:regionArea>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, Republic of China</s1>
</inist:fA14>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan</wicri:regionArea>
<wicri:noRegion>Taiwan</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, Lund University, Solvegutun 14A, S 233 62 Lund, Sweden</s1>
</inist:fA14>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Physics, Lund University, Solvegutun 14A, S 233 62 Lund</wicri:regionArea>
<wicri:noRegion>S 233 62 Lund</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yen, S T" uniqKey="Yen S">S. T. Yen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physics and Technology of the Russian Academy of Sciences, Nakhimovskii Avenue 34, Moscow 117218, Russia</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of Physics and Technology of the Russian Academy of Sciences, Nakhimovskii Avenue 34, Moscow 117218</wicri:regionArea>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chao, K A" uniqKey="Chao K">K. A. Chao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physics and Technology of the Russian Academy of Sciences, Nakhimovskii Avenue 34, Moscow 117218, Russia</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of Physics and Technology of the Russian Academy of Sciences, Nakhimovskii Avenue 34, Moscow 117218</wicri:regionArea>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">04-0167368</idno>
<date when="2004-03-15">2004-03-15</date>
<idno type="stanalyst">PASCAL 04-0167368 AIP</idno>
<idno type="RBID">Pascal:04-0167368</idno>
<idno type="wicri:Area/Main/Corpus">00BB16</idno>
<idno type="wicri:Area/Main/Repository">00A693</idno>
<idno type="wicri:Area/Russie/Extraction">000416</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1098-0121</idno>
<title level="j" type="abbreviated">Phys. rev., B, Condens. matter mater. phys.</title>
<title level="j" type="main">Physical review. B, Condensed matter and materials physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Deformation</term>
<term>Electrical conductivity transitions</term>
<term>Gallium compounds</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Internal stresses</term>
<term>Landau levels</term>
<term>Semiconductor quantum wells</term>
<term>Theoretical study</term>
<term>g-factor</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7321A</term>
<term>7321F</term>
<term>Etude théorique</term>
<term>Indium composé</term>
<term>Gallium composé</term>
<term>Semiconducteur III-V</term>
<term>Puits quantique semiconducteur</term>
<term>Niveau Landau</term>
<term>Transition conductivité électrique</term>
<term>Déformation</term>
<term>Contrainte interne</term>
<term>Facteur g</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Using Burts envelope function theory and the scattering matrix method, we investigate the hybridized electron-hole Landau levels in strained InAs/GaSb quantum wells sandwiched between wide-gap AlSb barrier layers under electric and a quantizing magnetic fields applied perpendicular to interfaces. At zero magnetic field, in the structures studied here, the lowest electron level in the InAs layer lies below the highest heavy-hole level in the GaSb layer. With increasing magnetic field, the electron levels move up and the heavy-hole levels move down, producing anticrossings and gaps in the Landau level structures. We have found that the Landau level structures depend strongly on the lattice-mismatched strain and the applied voltage. As a result, in the region before anticrossings, the g factor of the lowest electron Landau level has a larger value for the quantum well structure grown on GaSb than that for the structure grown on InAs, while in the region after anticrossings the situation reverses for the g factor. Under low magnetic field, the difference between the electron g factors for the structures grown on different substrates is found to be as large as 10 for zero bias and decreases significantly with increasing bias. When all electron levels become higher than hole levels at high magnetic fields, the semimetal-semiconductor transition occurs. The critical magnetic field B
<sub>c</sub>
for the phase transition in structures grown on InAs is found to be lower than that in structures grown on GaSb. It is also obtained that a positive voltage biased across the InAs/GaSb well essentially decreases B
<sub>c</sub>
. Therefore, for a fixed magnetic field, the semimetal-semiconductor transition can be controlled by a bias.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1098-0121</s0>
</fA01>
<fA02 i1="01">
<s0>PRBMDO</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. rev., B, Condens. matter mater. phys.</s0>
</fA03>
<fA05>
<s2>69</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Landau level structures and semimetal-semiconductor transition in strained InAs/GaSb quantum wells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZAKHAROVA (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>YEN (S. T.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHAO (K. A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Physics and Technology of the Russian Academy of Sciences, Nakhimovskii Avenue 34, Moscow 117218, Russia</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, Republic of China</s1>
</fA14>
<fA14 i1="03">
<s1>Department of Physics, Lund University, Solvegutun 14A, S 233 62 Lund, Sweden</s1>
</fA14>
<fA20>
<s2>115319-115319-8</s2>
</fA20>
<fA21>
<s1>2004-03-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>144 B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2004 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>04-0167368</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physical review. B, Condensed matter and materials physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Using Burts envelope function theory and the scattering matrix method, we investigate the hybridized electron-hole Landau levels in strained InAs/GaSb quantum wells sandwiched between wide-gap AlSb barrier layers under electric and a quantizing magnetic fields applied perpendicular to interfaces. At zero magnetic field, in the structures studied here, the lowest electron level in the InAs layer lies below the highest heavy-hole level in the GaSb layer. With increasing magnetic field, the electron levels move up and the heavy-hole levels move down, producing anticrossings and gaps in the Landau level structures. We have found that the Landau level structures depend strongly on the lattice-mismatched strain and the applied voltage. As a result, in the region before anticrossings, the g factor of the lowest electron Landau level has a larger value for the quantum well structure grown on GaSb than that for the structure grown on InAs, while in the region after anticrossings the situation reverses for the g factor. Under low magnetic field, the difference between the electron g factors for the structures grown on different substrates is found to be as large as 10 for zero bias and decreases significantly with increasing bias. When all electron levels become higher than hole levels at high magnetic fields, the semimetal-semiconductor transition occurs. The critical magnetic field B
<sub>c</sub>
for the phase transition in structures grown on InAs is found to be lower than that in structures grown on GaSb. It is also obtained that a positive voltage biased across the InAs/GaSb well essentially decreases B
<sub>c</sub>
. Therefore, for a fixed magnetic field, the semimetal-semiconductor transition can be controlled by a bias.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C21A</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C21F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7321A</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7321F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Etude théorique</s0>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Theoretical study</s0>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Puits quantique semiconducteur</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Semiconductor quantum wells</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Niveau Landau</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Landau levels</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Transition conductivité électrique</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Electrical conductivity transitions</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Déformation</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Deformation</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Contrainte interne</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Internal stresses</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Facteur g</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>g-factor</s0>
</fC03>
<fN21>
<s1>110</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0415M000757</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000416 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000416 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:04-0167368
   |texte=   Landau level structures and semimetal-semiconductor transition in strained InAs/GaSb quantum wells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024